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A theoretical solution is presented to the problem of the nonisothermal flow of a nonlinearly viscoplastic 

lubricant in a radial annular slit. 

Heat transfer from a nonlinearly viscoplastic fluid flowing radially between disks occurs in the flow of lubricants in 
hydrostatic thrust bearings. Such bearings are used in friction components characterized by a low rotational speed and high unit 

load. 
An important criterion for the optimization of hydrostatic bearings is the energy criterion. Heat release in the bearings 

should be minimal, since it lessens the accuracy of installation of the bearing, complicates the operation of cooling devices, 
and increases the probability of deviation from a stable temperature regime. 

The well-known solutions for the radial flow of a viscoplastic fluid [1-4] have been obtained for the 

Shvedovf-Bingham flow equation, which presumes a linear dependence of shear stress on shear rate. At the same time, a 

number of fluids of practical importance - in particular, lubricants used in hydrostatic bearings - exhibit nonlinearly 

viscoplastic properties. The solution of the problem of the flow of nonlinearly viscoplastic lubricants described by the 

Herschel-Balkly model in step bearings was presented in [5]. 
The authors of [6] proposed a relation to describe the rheological properties of plastic lubricants. This expression 

closely approximates the experimental data within a broad range of shear rates: 

"~ = ~o q- ~1o exp [-- (T - -  To)/Gol "f. (1) 

We will examine the flow of a nonlinearly viscoplastic lubricant in the gap of a hydrostatic thrust bearing. We will 
ignore rotation of the loaded surfaces, assuming that the bearing as a whole rotates slowly. The flow scheme is shown in Fig. 
1. The bearing consists of upper 1 and lower 2 disks. The lower disk has a hole 3 in its central part to admit lubricant, and 

it rests on a stationary base 4. The external and internal radii of the disks are equal to rli and r I, respectively, while the gap 

between the disks is equal to 2h. A load F is applied to the upper disk. Figure 1 also shows a diagram of the shear-stress 

distribution in the lubricant layer 5 and the velocity profile 6. 
To solve the problem, we isolate an annular element of width Ar with the mean radius rj, as shown in Fig. 1. We 

assume that the height of the quasisolid region and the pressure gradient are constant within each such element. 
Due to the symmetry of the flow, we obtain the solution for the top part of the radial slit. 
With allowance for the fact that we are examining the flow of highly viscous non-Newtonian fluids, we can ignore 

convective heat transfer. We assume that the properties of the lubricant are independent of the temperature and pressure. The 
equations of motion and energy for the lubricant flow on a section of width Ar within the region of gradient flow (rio < 2 < 

1) appear as follows in dimensionless form: 

a~ (2) 

a~O -k--~. Off_ _ 0. (3) 
~ Oz 
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Fig. 1. Lubricant flow in a hydrostatic thrust bearing. 

We write the boundary conditions 

z - - l ; v = 0 ;  O = 0 ;  z = h o ;  - 
o-6 oo 

_ = 0 ;  - - = 0 . _  (4) 
Oz Oz 

The contact conditions: 

z = h 0 ;  v--v0; (9=f9o. 

Since flow velocity is constant in the core and since no energy is dissipated, we write the energy equation for the region 
of the quasisolid core in the form 

020 
~ O. (5) 

Oz~ 

The boundary conditions: 

z = 0 ;  0~3_ _ 0 .  (6) 
Oz 

Proceeding on the basis of the equilibrium equations for the quasisolid core, we express the dimensionless pressure 
gradient as follows: 

0~ 1 

Or = g (7) 

Integrating the equations of motion (2) and energy (3) twice with the corresponding boundary conditions (4), with 

allowance for flow equation (I) and Eq. (7), we obtain the distribution of velocity and temperature in the region of gradient 
flow on a section of width Ar which contains a quasisolid core of constant height 1~o: 

v ----- L { exp (W) [ho (1 + L) ---~] - -  exp (W1) ~ho (! + L) - -  11 }, (8) 

{ [ C ' z _ 2 ) -  ~ + 2-/L~o - -  2 L ~  + O = L  ~ exp(W) L-h~(lq-2L) 

[ + -- 1 
-k exp (W1) - -  L-h~ (1 q- 2L) - -  2 q- 1 - -  2Lh o -k 2L~o z ]' ho (1 2L) (1 - -z )  . (9) 

.1 

The velocity of the core 9 is determined from Eq. (8) with ~ = ho. Integrating Eq. (5) with allowance for boundary 
condition (6) and the contact condition, we find that the temperature of the core is constant over the height of the gap and is 
equal to the temperature 0 o determined from Eq. (9) with ~ = ho. 

The local dimensionless heat flux from the lubricant to the load-bearing surface for an area of width z~r is determined 
by integrating Eq. (3) with allowance for boundary conditions (4) at ~ = 1. The final form of the theoretical formula to 
determine heat flux is 
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Fig. 2. Dependence of the load-carrying capacity of a bearing (dimensionless) 
(a) and heat flux to the loaded surface (dimensionless) (b) on lubricant flow 
rate (dimensionless) for different values of the parameter L: 1) L = I; 2) 

0.7; 3) 0.5; 4) 0.3; 5) 0.1; 6) 0.05. 

OO ) L 7= ---~- z=l----- h~-~ exp (WI)tl + ho(l q-2L)(hoL-- i)] -F LZho (I- 2L). (10) 

The mean dimensionless heat flux to the loaded surface of the bearing is determined by summing the amounts of heat 
transmitted to the surface of each annular element and referring the result to the area of the bearing surface. 

To determine the dimensionless height of the core h0 for each element of width Ar, we use the continuity equation in 

integral form: 

1 1 

Q = r  ~ v d z = r ( .  I vdz -q- hovo) . (11) 
o h-'o 

Finally, the expression to determine ho can be represented as 

1 

' ( , '  Lh-0) 
(12) 

Equation (12) is transcendental relative to h0, so we used numerical methods to determine the height of the quasisolid 

core on each section of width Ar. 
We used Eq. (7) to determine the dimensionless pressure gradient within each annular element. The load-carrying 

capacity of the bearing was determined by integrating the linear pressure distribution over the radius within each annular 

element and then summing the forces acting on each element. 
To analyze the effect of the rheological properties of lubricants on the load-carrying capacity of a thrust bearing and 

the heat flux to the bearing surfaces, we performed calculations on a computer with the use of the formulas obtained above. 

The results of the calculations are shown in Fig. 2. 
In dimensionless coordinates, Fig. 2a shows the dependence of the load-carrying capacity of the bearing on lubricant 

flow rate with different values of the parameter L for a bearing with a central chamber having a radius ~I = 0.35. 
It is evident from the figure that with an increase in lubricant flow rate, the load-carrying capacity of the bearing 

increases more rapidly for a large value of the parameter. Given equal flow rates, the highest load-carrying capacity is shown 
by the bearing in which the lubricant has high values of L (corresponding to an increase in the lubricant's effective viscosity). 

In dimensionless coordinates, Fig. 2b shows graphs of the dependence of heat flux to the loaded surfaces of the bearing 

on lubricant consumption for different values of L. 
If we compare the heat flux to the bearing surface for bearings of identical load-carrying capacity but different values 

of L and, accordingly, different lubricant flow rates, we find from an analysis of Fig. 2 that the heat flux to the loaded surface 
and the corresponding heat dissipation in the lubricant layer decrease substantially with an increase in the effective viscosity 

of the lubricant. 
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TABLE 1. Dependence of Dimensionless Parameters Characterizing the 

Performance of a Bearing on the Rate of Flow of Lubricant through the Gap 
with rl  = 0.35, s = 0.0015, and Different Types of Lubricant 

IGP-30 + 5% ceresine-65 IRP-75 + 2.5% ceresine-65 

0,5276 
7,770 

13,17 
18,56 
23,96 

3,162 
6,898 
9,523 

11,57 
13,27 

2,852 
24,35 
58,21 

100,38 
148,77 

1 , 5 6 1  
5,110 
8,659 

12,21 
15,76 

F 

6,127 
12,66 
16,89 
20,08 
22,63 

16,59 
110,9 
248,5 
413,9 
599,6 

To confirm these results, we performed numerical calculations for the following lubricant compositions: oil IPG-30 
thickened with ceresine-65 in the amount 5% by wt; oil IRP-75 thickened with ceresine-65 in the amount 2.5% by wt. 

The theological constants for these lubricants were determined on a rotation viscometer of the "Reotest" type and were 
found to be as follows: for oil IGP-30 with 5% (by wt.) ceresine-65: r 0 = 18.0 N/m2; 7o = 0.077384 N-sec/m2; G O = 237.0 
N/m2; for oil IRP-75 with 2.5% (by wt)  ceresine-65: r o = 13.0 N/m2; r/o = 0.178212 N.sec/m2; G o = 222.1 N/m 2. Table 
1 shows results of numerical calculations of dimensionless parameters characterizing the performance of the bearing. 

The results that were obtained fully validate the laws established previously. 

The following conclusions can be drawn from the above discussion: in order to reduce lubricant consumption and 
increase load-carrying capacity when lubricating hydrostatic thrust bearings, a lubricant with the highest possible effective 
viscosity should be used. In this case, it is possible to regulate the load-carrying capacity of the bearing by changing lubricant 

consumption within a broad range of values. Such an approach also minimizes dissipative heat losses in the lubricant layer. 

NOTATION 

to, ~7o, Go, rheological parameters; T, stress intensity; r and j,, shear stress and rate, respectively; ? = fifo, 
dimensionless shear stress; L = Go/to, s = h/rib dimensionless parameters; p, lubricant pressure; ~ = ps/ro, dimensionless 
lubricant pressure; ~: = F/(rOrll2S), load-carrying capacity of bearing; h, half the height of the gap between the disks; ho, height 
ofquasisolid core; ho, dimensionlessheight of quasisolid core; z, axial coordinate; 2 = z/h, dimensionless axial coordinate; r, 

radial coordinate; rli and rl, external and internal radii of disks; f = r/rib dimensionless radial coordinate; ,~j = 0p/0?, 

dimensionless pressure gradient on section j; v, lubricant flow velocity; 9 = ~oV/ro h, dimensionless velocity; X, thermal 
conductivity of the lubricant; T, lubricant temperature, K; To, temperature of the bearing surfaces; 0 = (T - T0)X~?oh-o2h 2, 

dimensionless temperature; C: 1 = -0e /0~ ,  dimensionless heat flux; 9o, Co, dimensionless velocity and temperature of the 
quasisolid core; Q, volumetric flow rate of lubricant; 0 = Q~?o/47rroh2rii, dimensionless flow rate; K, mtmber of annular areas 
of the subdivision in the calculation of the load-bearing surface of the bearing; W = (1/L)[(rdl]o) - 1], W 1 = (I/L)[(1/~) 
- 1], dimensionless parameters. 
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